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Abstract—A crucial part in machine learning is data 

preprocessing. Choosing the appropriate pipeline before 

modelling could significantly improve model accuracy. However, 

with the number of possibilities available to choose from, an 

optimized search algorithm would be beneficial to reduce search 

time. AutoPlumber aims to solve this problem by creating an 

optimized search algorithm for common data preprocessing 

techniques to quickly test possibilities with a simple user setup. 
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I.  INTRODUCTION 

Data Science has been a rapidly growing field in the last few 
decades joined with the increase of data collection by services 
and companies around the world. A comprehensive analysis of 
the data possessed can lead to an improved understanding of the 
problem at hand and reduces guessing in decision-making. From 
analysis, oftentimes modelling is done as the next step of the 
operation to do classification or regression tasks as some 
examples. Before data is passed on to the model, it has to be 
preprocessed in order to make the data operable by the model, 
or to improve the predictive quality of the model. Examples of 
preprocessing include imputation, outlier removal, encoding, 
and many more. The abundance of options available to choose 
from makes this task a rather cumbersome one, especially if 
handling with large amounts of data, where each trial run could 
take a considerable amount of time. Trying out every possible 
combination of techniques on every feature using a bruteforce 
search would then be very time consuming and not efficient. 
With that problem in mind, this library is built with the goal of 
an creating an optimzed preprocessing pipeline searcher, which 
could be very useful in the early stages of modelling to act as a 
baseline to build from. As most of the existing optimization 
frameworks deal with model selection and hyperparameter 
tuning such as Hyperopt [1] and Optuna [2], we believe that this 
library could be a novel solution in this field. 

The searching algorithm implemented here will be variations 
of greedy algorithms with different heuristics which would 
reduce the search space in order to search more efficiently. State 
nodes would contain the current pipeline chosen and would 
expand into nodes based on the available options that can be 
taken in the next step of the preprocessing. A bruteforce option 
would be available for the user to choose to ensure an exhaustive 
search of all options. 

II. PRELIMINARIES 

A. Tree 

 

Fig 1. An example of a tree 

Source: Some tree.svg. Encyclopedia of 
Mathematics. URL: 

http://encyclopediaofmath.org/index.php?title=Some_tree.svg
&oldid=5255 

A tree is a connected graph which does not contain any 
circuits [3]. Following that definition, several properties can 
arise such as: 

1. For every pair of vertices in a tree, there is only one 
path 

2. A tree with n vertices has n－1 edges 

3. A tree with a distinguished vertex is called a rooted 
tree, with the distinguished vertex being called the 
root 

4. A vertex with a degree of one is called a pendant 
vertex 

5. A tree with two or more vertices will have at least 
two pendant vertices 

The tree we will be working with will be a rooted tree, with 
the root being the initial state of the data. For the purposes of this 
paper, we will refer a vertex as a node, and a pendant vertex as 
a leaf node instead. 

Edges between nodes can be unweighted or weighted. A 
weighted edge could represent a cost to transition between two 
nodes. 

mailto:williamadt123@gmail.com
mailto:13523006@std.stei.itb.ac.id
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B. Search Tree 

 
Fig 2. Search tree of a classic 8-puzzle problem 

Source: Multi-Agent Route Planning in Grid-Based Storage 

Systems - Scientific Figure on ResearchGate. Available from: 

https://www.researchgate.net/figure/Expansion-tree-of-an-8-

puzzle_fig10_322721630 

 
A search tree is an application of a tree for searching 

problems. Instead of having a singular value, each node has its 
value representing a state of the problem, with the leaf nodes 
being the ending states. A state which satisfies the requirements 
of a goal is called the goal state. A search tree is built by first 
defining the initial state of the problem. It then adds children 
nodes by expanding the node, which is the act of listing every 
valid possible action that can be taken in a the given node. 

C. Greedy Algorithm 

A greedy algorithm is a type of algorithm which is 

commonly used as a fast and simple way to solve optimization 

problems. It works by choosing the best immediate solution on 

every step of the search until it reaches an end state. In other 

words, a greedy algorithm will choose the local optima at a 

moment.Selection of the option is based on the cost of 

transitioning to the state by using a heuristic. 

A heuristic is a shortcut strategy to solve a problem quicker 

than an exhaustive search by trading optimality and 

completeness for speed. It is usually made using domain 

knowledge in conjunction with trial and error for a specific 

problem. By using heuristics, we reduce the search space 

significantly, but it also means we risk not finding the global 

optima of a problem. 

A greedy algorithm has the following elements: 

1. Candidate Set: A set of available choices to choose 

from in a given step 

2. Solution Set: A set of chosen candidates 

3. Solution Function: A function to determine if the 

candidate set can form a solution 

4. Selection Function: A function to select a 

candidate with a heurstic. 

5. Feasibility Function: A function to check if the 

selected candidate can be added to the solution 

6. Objective function: A function to evaluate the 

solution, maximize or minimize.  

III. METHODOLOGY 

AutoPlumber will be built using the python programming 
language and will also use other libraries such as pandas, numpy, 
scikit-learn, and others. 

A. Preprocessors 

We provide several classes as wrappers for common 
preprocessing techniques such as imputation, outlier removal, 
encoding, scaling. Each feature in the training dataset will have 
these objects in a chain and together will make up the state of 
the search tree. 

B. Imputation 

Imputation is the technique of filling out missing values in 

a dataset. Missing values are commonplace in real world data 

and thus a method of handling it is necessary. Sometimes rows 

with missing values are simply dropped from the dataset as a 

simple solution, however this could reduce the input data 

significantly if many rows contain missing values. As such, 

imputation strategies are usually used to handle missing values 

to preserve the size of the input data. 

The imputer class is a class to store the imputation strategy 

of a single column. It can impute using a strategy such as mean 

imputation, mode imputation, or median imputation, or we 

could give it a constant value to impute for example -1, to 

represent that the data was missing. 

 

1. import pandas as pd 

2.   

3. class Imputer: 
4.     def __init__(self, strategy="mean", constant=None): 
5.     def fit(self, X:pd.Series): 
6.     def transform(self, X:pd.Series) -> pd.Series: 
7.     def fit_transform(self, X:pd.Series) -> pd.Series: 

Fig. 3. Imputer class methods 

C. Outlier Removal 

Real world data will usually have outliers. They are values 
with a significant discrepancy than the expected distribution of 

https://www.researchgate.net/figure/Expansion-tree-of-an-8-puzzle_fig10_322721630
https://www.researchgate.net/figure/Expansion-tree-of-an-8-puzzle_fig10_322721630
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the vast majority of the data. Careful handling of these values 
are crucial since an outlier doesn’t necesarrily mean an invalid 
data, and removing them could lead to a loss of information. 
However, not removing outliers could end up creating noise for 
the model and reduce its accuracy. 

Several methods can be used to identify and handle outliers. 
Z-score based outlier removal uses a certain Z-score threshold 
to classify values as outliers. For example, a threshold of 3 
means that values over 3 standard deviations away from the 
mean will be considered as outliers. However, a caveat of this 
technique is that the data needs to be normally distributed for it 
to work well. 

Another method is the Interquartile Range (IQR) based 
outlier removal. An outlier is defined as values below the lower 
bound and above the upper bound which are defined as: 

𝐿𝑜𝑤𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄1 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝐼𝑄𝑅 

𝑈𝑝𝑝𝑒𝑟 𝐵𝑜𝑢𝑛𝑑 = 𝑄3 + 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∗ 𝐼𝑄𝑅 

This method is more robust to skewness in the data, which is 
when the distribution has a long tail. 

Both methods have different end results after detecting the 
outliers. We could either drop the row entirely or just cap the 
outlier values to the threshold they break. 

1. import pandas as pd 
2. class ZScoreOutlierRemover: 
3.     def __init__(self, threshold=3,capped=False): 
4.     def fit(self, X:pd.Series): 
5.     def transform(self, X:pd.Series)-> pd.Series: 
6.     def fit_transform(self, X) -> pd.Series: 

7.   

8. class IQROutlierRemover: 
9.     def __init__(self, threshold=1.5,capped=False): 
10.     def fit(self, X:pd.Series): 
11.     def transform(self, X:pd.Series) -> pd.Series: 
12.     def fit_transform(self, X:pd.Series) -> pd.Series: 

Fig. 4. Outlier removal classes 

D. Encoding 

Categorical data is not directly operable by a model. The data 
needs to be encoded into a numerical representation. Common 
encoding techniques such as one-hot encoding, label encoding, 
and target encoding, are commonly used. Although general 
guidelines such as using one-hot encoding for low unique valued 
data and label encoding for high uniqued valued data exist, 
unfortunately in practice sometimes the results do not align with 
them. So, again trial and error is used to determine the best action 
that can be taken. Here we wrap sklearn’s encoders to add 
additional behaviours such as a maximum category limit for the 
one-hot encoder. 

1. import pandas as pd 

2. import numpy as np 

3. from sklearn.preprocessing import LabelEncoder as 

SkLabelEncoder 

4. from sklearn.preprocessing import OneHotEncoder as 

SkOneHotEncoder 

5.   

6. class LabelEncoder: 

7.     def __init__(self): 

8.     def fit(self, X: pd.Series): 

9.     def transform(self, X: pd.Series) -> pd.Series: 

10.     def fit_transform(self, X: pd.Series) -> 

pd.Series: 

11.   

12. class OneHotEncoder:    

13.     def __init__(self, drop_first=False, 

max_categories=10): 

14.     def fit(self, X: pd.Series):     

15.     def transform(self, X: pd.Series) -> pd.DataFrame: 

16.     def fit_transform(self, X: pd.Series) -> 

pd.DataFrame: 

17.   

18. class TargetEncoder: 

19.     """Target encoder for categorical variables (mean 

encoding).""" 

20.     def __init__(self, smoothing=1.0): 

21.     def fit(self, X: pd.Series, y: pd.Series):     

22.     def transform(self, X: pd.Series) -> pd.Series:   

23.     def fit_transform(self, X: pd.Series, y: 

pd.Series) -> pd.Series: 
Fig. 5. Encoder classes 

E. Scaling 

Numerical data can be further transformed to improve the 
quality of a model. They are used to alter the distribution of the 
data and are crucial for distance based models for example 
Support Vector Machine (SVM) or k-Nearest Neighbors (KNN), 
to ensure every numerical column is on the same scale. Log 
transformations are also useful scaling techniques that can be 
used to reduce skewness of data. Our pipeline searcher works 
with sklearn’s scalers via an adapter and custom scalers can also 
work by matching the fit, transform, and fit_transform functions. 

1. class SeriesAdapter: 
2.     def __init__(self, scaler): 
3.     def fit(self, X):   
4.     def transform(self, X): 
5.     def fit_transform(self, X): 
6.    

Fig. 6. Scaler series adapter 

F. Pipeline 

A ColumnPipeline is a class which contains the processing 
done to a single column. They are then stored together in a 
DataFramePipeline class to represent the total preprocessing 
done to the dataset. 

G. AutoPlumber 

The main class of the library is the AutoPlumber class. It 
contains the methods to setup and run the data preprocessing 
optimization. The constructor asks for the model, scoring, cv, 
maximum iterations, and early stopping rounds. From there, we 
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define the preprocessing options we want to search from divided 
into imputation, outlier removal, encoding, and scaling. 

We commence the search by calling the fit() function on our 
dataset. A high-level overview of the search is as follows: 

1. Start with an empty pipeline as the initial state 

2. In each iteration, find if an improvement can be 
achieved for each column 

3. Choose the best improvement found in the iteration 

4. Repeat until no improvement can be achieved or if 
we have reached the maximum number of iterations 

This algorithm is a greedy algorithm that chooses only the 
best transformation on a column in every iteration. This means 
the pipeline is built incrementally every iteration and a 
previously transformed column can get another replacement 
transformation if the largest improvement is found on it during 
the current iteration. A more detailed explanation will be 
discussed in the following section. 

H. Search Algorithm 

1) Initialization 
1. current_pipeline = DataFramePipeline()  # Starts empty 

2. current_score = -np.inf 

3. columns_to_optimize = list(X.columns) 

4. no_improvement_count = 0 # Tracks stagnation 

Fig. 7. Search initial state 

 

2) Iterative Optimization 
For every iteration, we conduct a greedy search on every 

column to find the best transformation we can do currently. We 
then evaluate the newly modified pipeline and compare it with 
the last iteration’s score and we update our pipeline if it performs 
better. 

1. for iteration in range(self.max_iterations): 

2.     if self.verbose: 

3.         self.logger.info(f”\\n--- Iteration {iteration + 

1} ---") 

4.               

5.     improved = False 

6.     best_iteration_score = current_score 

7.     best_iteration_pipeline = None 

8.               

9.     # Try optimizing each column 

10.     for column_name in columns_to_optimize: 

11.         if self.verbose: 

12.             self.logger.info(f”Testing column: 

{column_name}”) 

13.                   

14.         # Find best pipeline for this column 

15.         best_column_pipeline, column_score = 

self._greedy_search_column( 

16.             column_name, X, y, current_pipeline 

17.         ) 

18.                   

19.         if best_column_pipeline is not None: 

20.             # Create new pipeline with this column 

optimization 

21.             test_pipeline = current_pipeline.copy() 

22.             test_pipeline.add_column_pipeline(column_nam

e, best_column_pipeline) 

23.                       

24.             try: 

25.                 test_pipeline.fit(X, y) 

26.                 test_score = 

self._evaluate_pipeline(test_pipeline, X, y) 

27.                           

28.                 if test_score > best_iteration_score: 

29.                     best_iteration_score = test_score 

30.                     best_iteration_pipeline = 

test_pipeline 

31.                     improved = True 

32.                               

33.                     if self.verbose: 

34.                         self.logger.info(f”  Improvement 

found! Score: {test_score:.4f}”) 

35.                       

36.             except Exception as e: 

37.                 if self.verbose: 

38.                     self.logger.warning(f”  Pipeline 

failed: {str€}”) 

39.               

40.     # Update current best if improved 

41.     if improved and best_iteration_pipeline is not None: 

42.         current_pipeline = best_iteration_pipeline 

43.         current_score = best_iteration_score 

44.         no_improvement_count = 0 

45.                   

46.         if self.verbose: 

47.             self.logger.info(f”New best score: 

{current_score:.4f}”) 

48.     else: 

49.         no_improvement_count += 1 

50.         if self.verbose: 

51.             self.logger.info(“No improvement in this 

iteration”) 

52.               

53.     # Record iteration 

54.     self.search_history_.append({ 

55.         ‘iteration’: iteration + 1, 

56.         ‘score’: current_score, 

57.         ‘improved’: improved 

58.     }) 

59.               

60.     # Early stopping 

61.     if no_improvement_count >= 

self.early_stopping_rounds: 

62.         if self.verbose: 

63.             self.logger.info(f”Early stopping after 

{no_improvement_count} iterations without improvement”) 

64.         break 

65.           

66. # Store best results 

67. self.best_pipeline_ = current_pipeline 

68. self.best_score_ = current_score 

69. self.is_fitted = True 

Fig. 8. Iterative optimization code 

 
For every column, every possible transformation available 

for choosing is tried with the current DataFramePipeline to 
evaluate the score. 
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1. def _greedy_search_column( 

2.     self,  

3.     column_name: str,  

4.     X: pd.DataFrame,  

5.     y: pd.Series,  

6.     current_pipeline: DataFramePipeline 

7. ) -> Tuple[ColumnPipeline, float]: 

8.     """ 

9.     Perform greedy search for the best preprocessing 

pipeline for a single column. 

10.     """ 

11.     column = X[column_name] 

12.     column_type = self._detect_column_type(column) 

13.           

14.     if self.verbose: 

15.         self.logger.info(f"Optimizing column 

'{column_name}' (type: {column_type})") 

16.           

17.     # Get all possible transformer combinations for this 

column 

18.     transformer_combinations = 

self._get_applicable_transformers(column, column_type) 

19.           

20.     best_score = -np.inf 

21.     best_column_pipeline = None 

22.           

23.     # Try each transformer combination 

24.     for i, transformers in 

enumerate(transformer_combinations): 

25.         try: 

26.             # Create column pipeline 

27.             column_pipeline = 

ColumnPipeline(column_name, transformers) 

28.                   

29.             # Create test pipeline 

30.             test_pipeline = current_pipeline.copy() 

31.             test_pipeline.add_column_pipeline(column_nam

e, column_pipeline) 

32.                   

33.             # Fit and evaluate 

34.             test_pipeline.fit(X, y) 

35.             score = 

self._evaluate_pipeline(test_pipeline, X, y) 

36.                   

37.             if score > best_score: 

38.                 best_score = score 

39.                 best_column_pipeline = column_pipeline 

40.                   

41.             if self.verbose and i % 5 == 0: 

42.                 self.logger.debug(f"  Tested 

{i+1}/{len(transformer_combinations)} combinations") 

43.                       

44.         except Exception as e: 

45.             if self.verbose: 

46.                 self.logger.warning(f"  Combination {i} 

failed: {str(e)}") 

47.             continue 

48.           

49.     if self.verbose: 

50.         self.logger.info(f"  Best score for 

'{column_name}': {best_score:.4f}") 

51.     return best_column_pipeline, best_score 

Fig. 9. Column greedy search 

3) Example 
We have an example dataset we would like to optimize with 

the columns: [“num_1”, num_2”,  “cat_1”, “cat_2”], column 
names starting with num being numerical columns and cat being 
categorical columns. We try out every transformer combination 
based on our options for every column and we list the best ones 
from each of them before choosing to transform the best column: 

1. Iteration 1: 

a. Num_1: [impute_mean + standard_scale], 
score = 0.65 

b. Num 2: [impute median + robust scale], 
score = 0.72, best score 

c. Cat 1: [impute mode + label encode], 
score = 0.58 

d. Cat 2: [one hot encode], score = 0.61 

2. Iteration 2 current:{num_2:[impute median + 
robust scale]}: 

a. Num 1: [impute mean + log scale], score 
= 0.78, best score 

b. Num 2: [impute mean + min max scale], 
score = 0.70 

c. Cat 1: [target encode], score = 0.76 

d. Cat 2: [one hot encode], score = 0.75 

3. Iteration 3 current:{num_1:[impute mean + log 
scale], num_2: [impute median + robust scale]}, 
continue until done 

IV. BENCHMARKS 

To demonstrate our library, we will test on the titanic dataset, 
https://www.kaggle.com/c/titanic/data, with a random forest 
model and a logistic regression model. A basic preprocessed 
dataset with median imputed values for the numerical columns 
and mode imputed values for the categorical columns which are 
then encoded using a label encoder, is chosen as the control 
benchmark which will be compared against the AutoPlumber 
optimized search. We will be using accuracy as the scoring 
metric and a cross validation count of 5 splits. 

A. Data Distribution 

 
Fig. 10. Data distribution of the titanic dataset 

 

https://www.kaggle.com/c/titanic/data
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B. Missing Values 

 
Fig. 11. Missing values of the dataset 

C. Results 

 
 Method CV 

Score 

Test 

Accuracy 

CV 

diff 

Test 

diff 

Random 

Forest 

Basic 0.7936 0.7709 
+3.25% +6.96% 

AutoPlumber 0.8203 0.8286 

Logistic 

Regression 

Basic 0.7978 0.8045 
+3.17% -0.69% 

AutoPlumber 0.8231 0.7989 

Table 1. Accuracy result comparison 

 
Based on the benchmarks shown on Table 1. , we can 

observe that AutoPlumber successfully increased our cross 
validation scores for both models approximately by 3 percent. 
Test accuracy increased by 6 percent for our random forest 
model, a 0.69 percent decrease happened to our logistic 
regression model, although the cross validation score should be 
the main metric of testing a model’s performance. Looking with 
our cross validation scores, the logistic regression is chosen as 
the best model of this benchmark, and further analysis on it will 
be done. Visualizations of the improvement done in each 
iteration can be displayed to gain a deeper understanding of the 
optimization process. 

 

Fig. 12. Random forest iteration improvements 

 

 

 

 

Fig. 13. Logistic regression iteration improvements 

We can see from Fig. 12 and Fig. 13 that the model 
performance will improve on every iteration until it is not 
possible. 

 

Fig 14. Cumulative improvement graph 
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